

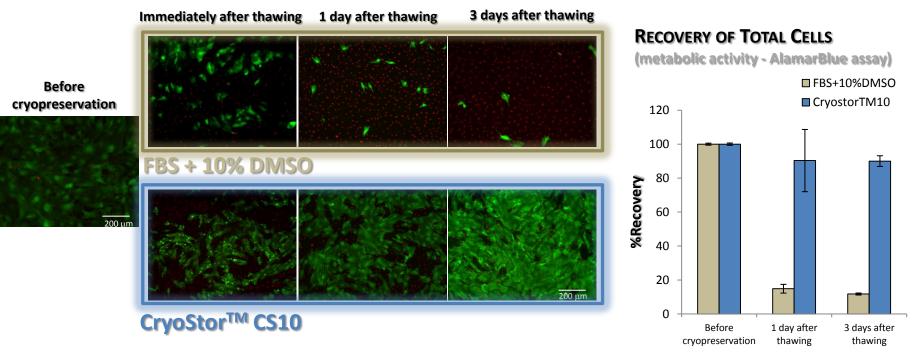
CRYOPRESERVATION OF CARDIOMYOCYTES DERIVED FROM INDUCED PLURIPOTENT STEM CELLS

Cláudia Correia^{1,2}, Margarida Serra^{1,2}, Marcos FQ Sousa^{1,2}, Catarina Brito^{1,2}, Karsten Burkert³, Azra Fatima³, Juergen Hescheler³, Manuel JT Carrondo^{2,4}, Tomo Saric³, Paula M. Alves^{1,2}

¹ Instituto de Tecnologia Química e Biológica (ITQB) – Universidade Nova de Lisboa (UNL), Oeiras, Portugal; ² Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal; ³ Institute for Neurophysiology University of Cologne, Cologne, Germany ⁴ Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Monte de Caparica, Portugal

(http://tca.itqb.unl.pt; www.ibet.pt)

Presented at "Scale-up and Manufacturing of Cell-based Therapies II" 21st-23rd January 2013 San Diego, California, USA

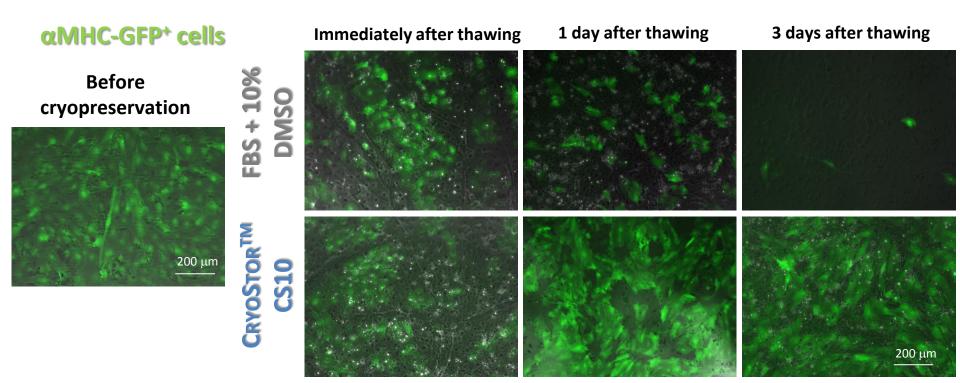


CRYOPRESERVATION OF CARDIOMYOCYTES

Cryopreservation Medium Formulation: FBS + 10% DMSO vs. CryoStor[™] CS10

CELL VIABILITY (FDA - VIABLE CELLS, PI - DEAD CELLS)

CRYOSTORTM CS10


Higher cell viability and cardiomyocyte recovery after thawing

CryoStoreTMCS10 improves cell survival by reduction of both apoptosis and necrosis by inhibition of cellular stress during cryopreservation (Malpique et al., Tissue Eng Part C, 2010) CONFIDENTIAL

CRYOPRESERVATION OF CARDIOMYOCYTES

Cryopreservation Medium Formulation: FBS + 10% DMSO vs. CryoStor[™] CS10

CRYOSTORTM CS10

Higher cell viability and cardiomyocyte recovery after thawing

CryoStoreTMCS10 improves cell survival by reduction of both apoptosis and necrosis by inhibition of cellular stress during cryopreservation (*Malpique et al., Tissue Eng Part C, 2010*) CONFIDENTIAL