Skip to main content

Dendritic Cells Transfected with Adenoviral Vectors as Vaccines

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1139))

Abstract

Dendritic cells (DCs) are critical to the initiation of a T-cell response. They constitute the most potent antigen-presenting cell (APC) endowed with the unique capacity to stimulate an antigen-specific T-cell responses by naïve T cells. Adenoviruses (Ad) have high transduction efficiency for many cell types including cells of hematopoietic origin independent of their mitotic status, and replication-defective Ad have demonstrated a safety profile clinically. Further, Ad vectors provide a high level of transgene expression, and Ad-transduced DCs can effectively present antigenic proteins. In this chapter, we outline a functionally closed, good manufacturing protocol for the differentiation of monocytes into DCs and transduction by Ad vectors. Basic functional and phenotypic release assays are provided, as well as contrasting research approaches for Ad-transduced DC-based vaccines.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kantoff PW et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  CAS  PubMed  Google Scholar 

  2. Morse MA et al (1999) Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res 59:56–58

    CAS  PubMed  Google Scholar 

  3. Reichardt VL et al (1999) Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood 93:2411–2419

    CAS  PubMed  Google Scholar 

  4. Gallo P et al (2005) Adenovirus as vehicle for anticancer genetic immunotherapy. Gene Ther 12(Suppl 1):S84–S91

    Article  CAS  PubMed  Google Scholar 

  5. Sakurai F (2003) Characterization of in vitro and in vivo gene transfer properties of adenovirus serotype 35 vector. Mol Ther 8:813–821

    Article  CAS  PubMed  Google Scholar 

  6. Schoggins JW, Falck-Pedersen E (2006) Fiber and penton base capsid modifications yield diminished adenovirus type 5 transduction and proinflammatory gene expression with retention of antigen-specific humoral immunity. J Virol 80:10634–10644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Rouard H et al (2000) Adenoviral transduction of human ‘clinical grade’ immature dendritic cells enhances costimulatory molecule expression and T-cell stimulatory capacity. J Immunol Methods 241:69–81

    Article  CAS  PubMed  Google Scholar 

  8. Lyakh LA et al (2002) Adenovirus type 5 vectors induce dendritic cell differentiation in human CD14(+) monocytes cultured under serum-free conditions. Blood 99:600–608

    Article  CAS  PubMed  Google Scholar 

  9. Cao H et al (2000) In vitro generation of dendritic cells from human blood monocytes in experimental conditions compatible for in vivo cell therapy. J Hematother Stem Cell Res 9:183–194

    Article  CAS  PubMed  Google Scholar 

  10. Lemarie C et al (2007) Purification of monocytes from cryopreserved mobilized apheresis products by elutriation with the Elutra device. J Immunol Methods 318:30–36

    Article  CAS  PubMed  Google Scholar 

  11. Gulen D et al (2008) Closing the manufacturing process of dendritic cell vaccines transduced with adenovirus vectors. Int Immunopharmacol 8:1728–1736

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Y et al (2003) Commercial scale production of dendritic cells for cancer immunotherapy. Proc Am Assoc Cancer Res 44:2876A

    Google Scholar 

  13. Thurner B et al (1999) Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 223:1–15

    Article  CAS  PubMed  Google Scholar 

  14. Whiteside TL et al (2009) Production of a dendritic cell-based vaccine containing inactivated autologous virus for therapy of patients with chronic human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 16:233–240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Padley DJ et al (2001) Mature myeloid dendritic cells for clinical use prepared from cd14+ cells isolated by immunomagnetic adsorption. J Hematother Stem Cell Res 10:427–429

    Article  CAS  PubMed  Google Scholar 

  16. Wong EC et al (2002) Development of a closed-system process for clinical-scale generation of DCs: evaluation of two monocyte-enrichment methods and two culture containers. Cytotherapy 4:65–76

    Article  CAS  PubMed  Google Scholar 

  17. Bender J (2000) Next generation clinical systems for the production of dendritic cells. Clin Appl Immunol Rev 1:37–44

    Article  CAS  Google Scholar 

  18. Suen Y et al (2001) Comparison of monocyte enrichment by immuno-magnetic depletion or adherence for the clinical-scale generation of DC. Cytotherapy 3:365–375

    Article  CAS  PubMed  Google Scholar 

  19. Gajdosikova A et al (2006) Acute toxicity of magnetic nanoparticles in mice. Neuro Endocrinol Lett 27(Suppl 2):96–99

    CAS  PubMed  Google Scholar 

  20. Berger T et al (2005) Efficient elutriation of monocytes within a closed system (Elutra™) for clinical-scale generation of dendritic cells. J Immunol Methods 298:61–72

    Article  CAS  PubMed  Google Scholar 

  21. Stockwin LH et al (2002) Engineered expression of the Coxsackie B and adenovirus receptor (CAR) in human dendritic cells enhances recombinant adenovirus-mediated gene transfer. J Immunol Methods 259:205–215

    Article  CAS  PubMed  Google Scholar 

  22. Verhaagh S et al (2006) Human CD46-transgenic mice in studies involving replication-incompetent adenoviral type 35 vectors. J Gen Virol 87:255–265

    Article  CAS  PubMed  Google Scholar 

  23. Lore K et al (2007) Myeloid and plasmacytoid dendritic cells are susceptible to recombinant adenovirus vectors and stimulate polyfunctional memory T cell responses. J Immunol 179:1721–1729

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Dietz AB et al (2001) Maturation of dendritic cells infected by recombinant adenovirus can be delayed without impact on transgene expression. Gene Ther 8:419–423

    Article  CAS  PubMed  Google Scholar 

  25. Adams WC, Loré K (2011) Recombinant adenovirus vector infection of human dendritic cells. DOI:10.5772/20255

    Google Scholar 

  26. Bergelson JM et al (1997) Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323

    Article  CAS  PubMed  Google Scholar 

  27. Hemmi S et al (1998) The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther 9:2363–2373

    Article  CAS  PubMed  Google Scholar 

  28. Tillman BW et al (1999) Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J Immunol 162:6378–6383

    CAS  PubMed  Google Scholar 

  29. Einfeld DA et al (2001) Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol 75:11284–11291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Papagatsias T et al (2008) Activity of different vaccine-associated promoter elements in human dendritic cells. Immunol Lett 115:117–125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Richard E. Neubiser, Afc, for his contributions to this chapter and Alice S. Cole for her assistance in with manuscript preparation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Senesac, J., Gabrilovich, D., Pirruccello, S., Talmadge, J.E. (2014). Dendritic Cells Transfected with Adenoviral Vectors as Vaccines. In: Lawman, M., Lawman, P. (eds) Cancer Vaccines. Methods in Molecular Biology, vol 1139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0345-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0345-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0344-3

  • Online ISBN: 978-1-4939-0345-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics