Cryopreservation of Adherent Cells: Strategies to Improve Post-Thawing Viability and Function

Introduction

Clinical and commercial availability of cell-based products for tissue engineering and regenerative medicine require effective methods for their long-term storage in cryobanks, which are not yet established for complex systems such as cell monolayers, tissues or biosynthetic constructs [1]. Cell entrapment in a gel is a promising cryopreservation strategy to improve post-thaw viability and function of cell monolayers which were shown to poorly survive the cryopreservation process [2-5]. In this work, combined strategies for the cryopreservation of adherent cells were investigated based on cell entrapment in clinical-grade, highly purified alginate of extremely high viscosity (9.1% w/v, viscosity in distilled water > 30 mPa.s) uniformly cross-linked with BSA [6]. As model systems, Neuroblastoma N2a and Caco-2 Colon Adenocarcinoma cell lines were used due to their specific characteristics, which makes them interesting lines for studying the cryopreservation of differentiated cells [1-5]. As the cryopreservation medium, serum-free Cryostor [7] (BioCell Solutions) solution was compared with culture medium supplemented with bovine serum, both containing 10% MeSO.

Aim and Strategy

Develop optimized methodologies for the cryopreservation of functional cell monolayers for cell-based therapies and in-vitro pharmacological studies.

STRATEGY

Monolayer’s entrapment beneath a layer of ultra-high viscous (UHV) alginate

Methods

- **Culture**: Caco-2 and N2a cells were cultured on 4-well plates in either a non-differentiated or fully differentiated state. Caco-2 cells spontaneous differentiation into enterocyte-like cells was achieved through long-time culture. Neurotrophic differentiation of N2a cells was induced through retinoic acid addition to bovine serum content medium. After 1 or 4 days post-inoculation, a thin layer of UHV alginate cross-linked by BSA-fluor was added over the cells on the plates.

- **Cryopreservation**: After 5 days of culture (or 21 days for differentiated Caco-2 cells), cells were frozen at ① -1°C to -80°C. inside the plates with either serum-supplemented culture medium or Cryostor [7]. Survival (50%) of both 10% MeSO, and stored at -80°C during at least 1 week.

- **Post-thawing characterization**: Cell viability was assessed through membrane integrity assay and the metabolic assay alamethicin [8]. The structural integrity and differentiation state of the cells was evaluated through scanning electron microscopy. Maintenance of cell differentiated state after thawing was assessed through biochemical and immunomorphological assays, respectively.

Results

- **Effect of alginate entrapment on cell growth and differentiation**

- **Post-thaw recovery of non-differentiated monolayers**

- **Post-thaw viability and differentiation state of differentiated monolayers**

- **CONCLUSIONS**

- Monolayer entrapment beneath an alginate layer improves cell recovery by avoiding detachment from the substrate and minimizing membrane damage and cell detachment after thawing.

- The use of Cryostor solution improves the cryopreservation process for both cells lines, allowing the maintenance of high post-thaw recovery of viability and differentiation state.

- Cryptostor solution allows full recovery of metabolic activity and initiation of proliferation within 24 hours post-thawing.

References

Acknowledgments

The authors acknowledge the financial support received from the European commission “Cell Programming by Nanocellulose” (Nanocell-036734), and the Fundação para a Ciência e a Tecnologia (FCT) [PTDC/BIO/65127/2006]. Malpique acknowledges FCT for fellow support (SFRH/BPD/22046/2005).